Modeling Structural Heterogeneity in Proteins from X-Ray Data

نویسندگان

  • Ankur Dhanik
  • Henry van den Bedem
  • Ashley Deacon
  • Jean-Claude Latombe
چکیده

In a crystallographic experiment, a protein is precipitated to obtain a crystalline sample (crystal) containing many copies of the molecule. An electron density map (edm) is calculated from diffraction images obtained from focusing X-rays through the sample at different angles. This involves iterative phase determination and density calculation. The protein conformation is modeled by placing the atoms in 3-D space to best match the electron density. In practice, the copies of a protein in a crystal are not exactly in the same conformation. Consequently the obtained edm, which corresponds to the cumulative distribution of atomic positions over all conformations, is blurred. Existing modeling methods compute an “average” protein conformation by maximizing its fit with the edm and explain structural heterogeneity in the crystal with a harmonic distribution of the position of each atom. However, proteins undergo coordinated conformational variations leading to substantial correlated changes in atomic positions. These variations are biologically important. This paper presents a sample-select approach to model structural heterogeneity by computing an ensemble of conformations (along with occupancies) that, collectively, provide a near-optimal explanation of the edm. The focus is on deformable protein fragments, mainly loops and side-chains. Tests were successfully conducted on simulated and experimental edms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography.

Proteins are dynamic molecules, exhibiting structural heterogeneity in the form of anisotropic motion and discrete conformational substates, often of functional importance. In protein structure determination by X-ray crystallography, the observed diffraction pattern results from the scattering of X-rays by an ensemble of heterogeneous molecules, ordered and oriented by packing in a crystal latt...

متن کامل

Structural Analysis of Diheme Cytochrome c by Hydrogen–Deuterium Exchange Mass Spectrometry and Homology Modeling

A lack of X-ray or nuclear magnetic resonance structures of proteins inhibits their further study and characterization, motivating the development of new ways of analyzing structural information without crystal structures. The combination of hydrogen-deuterium exchange mass spectrometry (HDX-MS) data in conjunction with homology modeling can provide improved structure and mechanistic prediction...

متن کامل

X-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure

In this work, structural and magnetic properties of LaMnO3+δ compound prepared by citrate precursor method and annealed in presence of oxygen are investigated. The structural characterization of LaMnO3+δ by X-ray powder diffraction and using X’pert package and Fullprof program is evidence for a rhombohedral structure (R-3c space group) confirmed by FTIR measurement. The magnetic measurements sh...

متن کامل

Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling.

Modeling structural variability is critical for understanding protein function and for modeling reliable targets for in silico docking experiments. Because of the time-intensive nature of manual X-ray crystallographic refinement, automated refinement methods that thoroughly explore conformational space are essential for the systematic construction of structurally variable models. Using five pro...

متن کامل

A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering.

Natively unfolded proteins play key roles in normal and pathological biochemical processes. Despite their importance for function, this category of proteins remains beyond the reach of classical structural biology because of their inherent conformational heterogeneity. We present a description of the intrinsic conformational sampling of unfolded proteins based on residue-specific /Psi propensit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008